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SUMMARY

The paper presents a numerical method for the study of steady, transonic,
turbulent, viscous flow through plane turbine cascades. The governing equa-
tions are written in Favre-averaged form and closed with a first order model.
The turbulent quantities are expressed according to a two-equation K-e model
where low Reynolds number and compressibility effects are included. The solu-
tion is obtained by using a pseudo-unsteady method with improved perturbation
propagation properties. The equations are discretized in space by using a
finite volume formulation. An explicit multistage dissipative Runge-Kutta
algorithm is then used to advance the flow equations in the pseudo-time.

First results of calculations compare fairly well with experimental data.

INTRODUCTION

As the efficiency levels of turbine engines continue to increase, the
accurate prediction of blade performances becomes increasingly critical in the
development and design process. Although numerical methods to solve steady,
transonic, turbulent, viscous flows have been developed, efforts to apply
these methods to the calculation of performance of turbine blades have so far
proved somewhat unsatisfactory. This is mainly due to the failure of present
mathematical models to consistently simulate the complex phenomena inherent in
these flows. Futhermore, additional problems arise due to the presence of
numerical viscosity in the solution algorithm, sometimes of the same order of

magnitude of the physical one.

Previous calculations have been performed by using the simplifying assump-
tion of local equilibrium conditions and then evaluating the turbulent viscos-
ity coefficient via a generalized mixing length formula (ref. 1). These
calculations have proved to lead to quite accurate predictions of blade pres-
sure distributions at design point conditions, but in an analysis of blade per-
formances, while qualitative behavior of loss generation has been correctly
predicted, predictions of quantitative behavior must still be further improved.
Furthermore, in performing calculations of separated flows, only gualitative
results can be obtained by retaining the assumption of local equilibrium condi-
tions, as clearly represented by backward facing step flow calculations.

*University visitor.



The work presented here is focused on developing low-Reynolds number and
compressible K-e turbulence models for solving the problem of correctly pre-
dicting blade performances. The method includes low Reynolds number terms, so
that the equations are valid all over the laminar, transition, and turbulent
region (ref. 2). Furthermore, the method includes a density gradient term to
better simulate variable density effects.

The solution is obtained by using a pseudo-unsteady method with improved
perturbation propagation properties (ref. 3). The equations are discretized
in space by using a finite volume formulation. An explicit multi-stage dissi-
pative Runge-Kutta algorithm is then used to advance the flow equations in the
pseudo-time. Multi-stage schemes for the numerical solution of ordinary dif-
ferential equations are usually designed to give a high order of accuracy, but
in a pseudo-unsteady solution these schemes are selected only for their proper-
ties of stability and damping. The enhanced stability of a four-stage scheme
allows one to considerably reduce the numerical viscosity of the dissipative

terms.

SYMBOL LIST

C constant

CFL Courant number

D diffusion vector

E total specific energy

e specific internal energy

F flux tensor

f unknown vector

f function

H total enthalpy

Hp optimization matrix

I identity matrix

j index of the spatial discretization
K turbulence kinetic energy

k index of the multistage algorithm
L length scale of turbulent motions
M Mach number
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Re

Sc

sr
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index of the temporal discretization
unit outward normal |
updating rate

production of turbulence kinetic energy
Prandtl number

pressure

work due to turbulence

heat flux vector

Tow Reynolds number term
Reynolds number

source vector

Schmidt number

residual

time

turbulence intensity

velocity

volume

axial coordinate

tangential coordinate

flow angle

perturbation speed

specific heat ratio
characteristic volume dimension
time step

surface area

turbulence kinetic energy dissipation rate

kinetic energy loss coefficient




o] multistage scheme coefficient

K thermal conductivity

" viscosity coefficient

p density

T boundary of the fixed volume
T viscous stress tensor

Q artificial viscosity coefficient
Subscripts

j inviscid

is isentropic

] laminar

t turbulent

v viscous

0 total

1 intet

2 outlet

GOVERNING EQUATIONS

The unknown vector f is the solution of a system of conservation equa-
tions. This system is written Favre-averaged, dimensionless, vector, integral

form as follows
J J N - (F1 + FV)dE = J J J S dv

L v

The basic dependent variables are density, velocity, and energy. Their
conservation equations read as follows
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where from the equation of state of a perfect gas
P=(y-1)«p-ce

with

e = (E - v2/2) - (W - vZ/z)/Y

The stress tensor «t s the sum of a laminar and a turbulent part, where
the Tatter is expressed according to a classical eddy viscosity concept, i.e.

T = -2/3 - (u/Re - div(V) + p « K) « I + 2 . u/Re - (def(V))
where
Moo= Mg + By
Similarly, the heat flux vector is given by

g =-y + k - grad(e)/(Re - Pr)

The turbulent viscosity coefficient is expressed according with the
Prandtl-Kolmogorov formulation

2
My = C -f - p+Re:Ki/e

while

The turbulence variables are the turbulence kinetic energy and its dissi-
pation rate. Their conservation equations are written in the following low
Reynolds number and compressible form

Y
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where the production of turbulent energy from the mean flow energy P and the
work due to turbulence Q are given by

P = My (def(V) : def(V))/Re
Q = Cp T (grad(p) - grad(p)/pz)/Re

the low Reynolds number functions are given by (ref. 2)

fp = exp(-3.4/C1. + Ret/SO.))

fe] =1.0

2
fez = 1.0 - 0.33 - exp(-Re,)

t
R = -2. - u, - (grade(e))?/Re
€ : Mo
R, = 2. « u. - (grad(kK))%/Re
K= 7 " H
where
Re, = p - K& -« Re/(yu, « &)
t = °P Mo

and the model constants are assumed as

C, =1.43 C

=1.92 S¢c =1.3 S¢, = 1.0
el €

el
C =0.09 C =1.0
M

The above two equation model does not take into account the preferential
damping of velocity fluctuations in the direction normal to the wall, but it
is quite general and it is useful in laminar, transition, and turbulent
regions. Furthermore, the model adopts the assumptions and approximations
which are normally used for constant density flows, by retaining the gradient
diffusion model to be rewritten in the density weighted form without any



explicit account being taken of density fluctuations. However, the introduc-
tion of the compressibility term Q allows a partial consideration of varia-
ble density effects.

Along the inflow boundary, the total pressure, total density, flow angle,
inlet turbulence level, and length scale of the turbulent motions are speci-
fied, while the Mach number is extrapolated from the interior. Along the out-
flow boundary, the static pressure is specified, and all the other variables
are extrapolated. Along the solid boundaries, the no slip condition requires
the vanishing of velocity, turbulence kinetic energy, and turbulence kinetic
energy dissipation rate, the latter intended to be the modified quantity used
in the conservation equations. Furthermore, for adiabatic flows, the specific
internal energy gradient normal to the wall is set equal to zero. The density
is finally extrapolated by the interior.

NUMERICAL SOLUTION

The proposed equations are solved in two-dimensional geometries by using
a pseudo unsteady method with a finite volume, dissipative, explicit discreti-
zation. The solution of the steady equations is obtained as the asymptotic
solution of the following artificial unsteady equations

J J J %{) . H;]dv + J J N . (F, + F)dI = J J J S dv

v L v

These unsteady equations are generally constructed in order to obtain the bet-
ter convergence rate, obviously providing that the steady state solution is
not altered.

From the identity between the convergence process and the elimination
process of the initial perturbations to the steady solution, the convergence
parameters are determined in order to improve the perturbation propagation or

damping. We use (ref. 3)

Hp = Sr/Bmax-
] 0
0 1
0 0 1
LY S S VA Y
1 ] X ] y fz 0 0
0 ] 0
0 ]
where
2

f] =min(M™ - 1., 0)



fp = max(fy + 1., €D

with
M=V . (y. P/ 172
Cp is a small positive number, and

Bpax = ™Mn (By, By)

1/2
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These convergence parameters produce an improved ratio for subsonic flows
between the speeds of the fastest and slowest perturbation (ref. 3), and there-
fore result in an improved propagation.

These equations are then discretized in space by using a finite volume
discretization. The mesh is nonorthogonal and curvilinear, conforming to the
boundaries of the domain, with Tines intersecting at arbitrary angles, prop-
erly refined where high gradients are expected to occur. The discretization
nodes, located at the intersection of these lines, are the centers of hexago-
nal control volumes, obtained by connecting the six surrounding nodes. A
sample computational domain and the hexagonal control volume are shown in
figure 1.

The discretized equations are written as follows (refs. 2 and 4)

6
g{ A - ;E% (Fp g+ By o Ny - 8T //{ ' s‘
j=

where the subscript J refers to every face of the finite volume. The discre-
tization is second order accurate on smoothly varied meshes.

@

The equations are finally discretized in time by using an explicit, dis-
sipative discretization. Let the previous equation be rewritten with the addi-
tion of a dissipative term as follows

of _
5t = 1¢F) + D(F)

where T represents the residual and D 1is the dissipative term. An explic-
it k-stage Runge-Kutta algorithm, based on the work of Jameson (ref. 6), may
be written as follows

f(O) _ £

0

( (0)
f_-(1) = f(O) - 8] <8t - [T 7)) 4+ D(F 7]
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A four-stages scheme, with the standard coefficients

has a Courant limit CFL = 2.8 (refs. 6 and 7). If the dissipative part is
evaluated only once, the scheme has a slightly reduced Courant limit CFL = 2.6
(ref. 6), but it is computationally more efficient.

In order to further improve the computational efficiency, the dissipation
is corrected and the viscous terms are evaluated only at fixed iterations.
Then the k-stage scheme can be conveniently rewritten as follows

£C0) _ m
PO e st O w1 ™ s 0er O — g 0™
pRD O g st R 1 ™) w0 ) g o™
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The Courant limit remains substantially unaltered.

The dissipative terms are given as follows (ref. 2)

6
D" = 1/¢6 - st) - 2 (F7 - M
j=1 J

and

6 m
Q= Cop v |1, = Cgpr 1/6 - 3 (o5 ~p

3=1

my

The subscript j refers now to every surrounding node involved in the
finite volume approximation, and the superscript m refers to local time
m - &t. The terms referring to time m* - 8t are updated only at specific



iterations and assumed constant between two updatings. The updating rate is
taken equal to NV iterations, where NV is equal to 25, as a result of a

numerical optimization.

The dissipative term D 1is an approximation of second order differences.
Without correction, the artificial viscosity coefficient is of the order of
§r2/st, and the scheme is only first order accurate. MWhen the viscosity is
corrected and Q =1 - 0(8r), the viscosity has a coefficient of the order
of 6&r3/st, and the scheme is second order accurate.

Cqi1 and Cq» are vectors of coefficients, i.e., the viscosity coefficients
are dependent on this particular equation, for an improved accuracy/convergence

ratio (ref. 2).

The four-stage Runge-Kutta algorithm adopted here replaces an Euler algo-
rithm, i.e., a one-stage Runge-Kutta algorithm (refs. 1 to 3). Due to the
enhanced stability, the total amount of the numerical viscosity is considerably
reduced. This is the main advantage of the present time integration, since the
total CPU time remains substantially unaltered, the reduction in the number of
time steps due to convergence being balanced by the increase in the computa-
tional time required by every time step. If we assign two work units to the
evaluation of the residual (there are both viscous and inviscid contributions)
and one work unit to the evaluation of the dissipative term and we define the
efficiency of the scheme as the permitted CFL number divided by the number of
work units, the one-stage scheme has an efficiency of about 2.6/(5 + 2/NV),

i.e. about the same efficiency.

The time step is evaluated according to the classical CFL stability limit
all over the computational domain. It is taken slightly smaller than the local
CFL number in order to take into account the neglected stability limit due to

the viscous terms.

Due to the efficient pseudo unsteady solution, the method appears to be
rather fast, while the explicit finite volume discretization allows ease of
understanding and computer programming.

RESULTS

The turbulence model has been previously applied to the computation of
backward facing step flows, in order to test the prediction capability of the
low Reynolds number formulation when dealing with strongly recirculating flows
(ref. 2). The computed length of the recirculation region generally compares
fairly well with the experimental one. For a nearly incompressible flow, a
Reynolds number (based on step height and inlet flow conditions) of 42 000 and
an expansion ratio of 0.66, the predicted reattachment length is 7.50 against
a measured value of 7.33 (ref. 2). Further calculations performed by modifying
the Reynolds number, the inlet turbulence level, or the inlet length scale of
the turbulence have shown the expected behavior.

Sample calculations are performed here on a transonic turbine profile.
The blade tested is a mean section of a gas rotor blade. The blade cascade is



shown in figure 2. The blade coordinates and experimental velocity distribu-
tions are given in (ref. 5), while the experimental kinetic energy loss coeffi-

cient distributions are given in (ref. 8).

Calculations were preformed on a very fine computational grid, made up of
141 pitchwise lines, 91 between leading and trailing edge, and 61 pseudo
streamlines. About 20x103 iterations are performed before convergence. The
total CPU time on a VAX 8800 is less than 60 h.

The inlet total temperature is Tpy ~ 280 K. The inlet total pressure var-
jies more or less linearly with the outlet isentropic Mach number, the latter

defined as follows

(I-y) /vy 1/2
M21S= {2/(y =1) - [PZ/POI) -1.1}

and pgy; ~ 1.5 bar at Mpis ~ 0.8, pgy ~ 2.75 bar at Mpis ~ 1.4. The inlet
Reynolds number, based on inlet conditions and blade chord, carries linearly
with the outlet isentropic Mach number in the same range, It is Rgy; ~ 300 000
at Myis ~ 1.4. Calculations were performed for an inlet flow angle and an

outlet isentropic Mach number given as
a)] = 24° Mp,ig = 1.10, 1.42

In the comparison of predicted and measured /5/ blade isentropic Mach
number distributions at Mpjg ~ 1.42 in fiqure 3, agreement appears to be very

satisfactory.

In a comparison of predicted and measured /8/ outlet kinetic energy loss
coefficients, defined as

2
L = [pgy o) (Y-D/y = 110172+ (y=1) - My ]

where Pgp is a mass averaged value over a blade pitch, the predicted values
are ¢ ~ 0.047 at Mpjq ~ 1.10, ¢ ~ 0.032 at Mpjg ~ 1.42, while the measured
values are { ~ 0.048 at Mpyj¢ ~ 1.10, T ~ 0.030 at Mpjg ~ 1.42, thus result-
ing in an experimental uncertainty in the predicted values very close to the

experimental one.

The good accuracy is due to the use of a relatively refined mathematical
model and of a numerical integration with high spatial resolution and reduced
numerical viscosity.

If only the blade isentropic Mach number distributions has to be predic-
ted, a simpler mathematical model and a less refined numerical integration can
be used. If the two equation turbulence model is replaced by a mixing length
model, the total enthalpy is assumed to be constant, the time integration is
performed with a simple one step scheme, and if only a 65 by 19 computational
grid is used, the isentropic Mach number distributions are predicted within an
engineering accuracy, as represented in figures 4, 5, 9, and 10. 1In /9/ the
length scale of the turbulent motions is given by using a classical expres-
sion, derived from the formulation proposed by Nikuradse for pipe flows and
from the Van Driest damping factor, In /10/, it is simply taken proportional
to the size of the spatial discretization.



In the prediction of the outlet kinetic energy loss coefficient, these
simplified solutions allow neither a qualitative nor a quantitative agreement.
If a finer grid is used, the loss can be reduced, but the qualitative behavior
cannot be properly reproduced. In calculations performed with a 79 by 39
computational grid/1/, the predicted values are C ~ 0.054 at Mp;¢ ~ 1.10,
¢ ~ 0.055 at Mpjg ~ 1.42, while the measured values are ¢ ~ 0.048 at
Myjs ~ 1.10, T ~ 0.030 at Mpjg ~ 1.42.

CONCLUSIONS

The paper has presented a method for the solution of the Navier Stokes
equations in transonic cascade flow fields.

The work has been focused on the development of a low-Reynolds number and
compressible K-e turbulence model. The turbulence model! includes low Reynolds
number terms, so that the equations are valid all over the laminar, transi-
tion, and turbulent regions. Furthermore, the model includes a density gradi-
ent term to better simulate variable density effects.

The use of a four-stage Runge-Kutta algorithm allows one to significantly
reduce the numerical viscosity due to the dissipative terms, thus leading to a
better accuracy.

First results of calculations compare favorably with experimental data.
Even if uncertainties still remain, due to the limit of the numerical solution
algorithm (influence of grid refinement, numerical viscosity, . .) the pro-
posed method appears to be adequate for the study of steady transonic flows in

turbine cascades.
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